1. Cui S, Chen S, Li X, Liu S, Wang F. Prevalence of venous thromboembolism in patients with severe novel coronavirus pneumonia. J Thromb Haemost. 2020;18(6): 1421–1424. Doi: 10.1111/jth.14830.
2. Zhang C, et al. Incidence of venous thromboembolism in hospitalized coronavirus disease 2019 patients: a systematic review and meta- analysis. Front Cardiovasc Med. 2020;7:151. Doi:10.3389/fcvm.2020.00151
3. Zhou F, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054-1062. Doi: 10.1016/S0140-6736(20)30566-3.
4. Nahum J, et al. Venous thrombosis among critically ill patients with coronavirus disease 2019 (COVID-19). JAMA Netw Open. 2020;3(5): e2010478. Doi: 10.1001/jamanetworkopen.2020.10478
5. Goshua G, et al. Endotheliopathy in COVID-19-associated coagulopathy: evidence from a singlecentre, cross- sectional study. Lancet Haematol. 2020; 7(8):e575-e582.doi: 10.1016/S2352-3026(20)30216-7.
6. Iba T, Warkentin TE, Thachil J, Levi M, Levy JH. Proposal of the definition for COVID-19-associated coagulopathy. J Clin Med. 2021. 10(2):191.doi.org/10.3390/jcm10020191.
7. Nicolai L, et al. Immunothrombotic dysregulation in COVID-19 pneumonia is associated with respiratory failure and coagulopathy. Circulation, 2020; 142(12): 1176–1189. Doi:10.1161/CIRCULATIONAHA.120.048488.
8. Wichmann D, et al. Autopsy findings and venous thromboembolism in patients with COVID-19: a prospective cohort study. Ann Intern Med. 2020. 173(4): 268–277. Doi: 10.7326/M20-2003.
9. Thendiono E. Against All Odds: Challenges In Managing COVID-19 Severe Illness In A Rural Setting.Abstract Book of the 20th European Conference of Internal Medicine. EJCRIM2022;9. Doi:10.12890/2022_V9Sup1.
10. Conway EM, et al. Understanding COVID-19 associated coagulopathy. 2022. 22(10): 639-649.doi: 10.1038/s41577-022-00762-9.
11. Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020; 18(4):844–847.doi: 10.1111/jth.14768.
12. Ali N. Elevated level of C- reactive protein may be an early marker to predict risk for severity of COVID-19. J Med Virol. 2020; 92(11):2409–2411. Doi: 10.1002/jmv.26097.
13. Agrati C, et al. Elevated P- selectin in severe COVID-19: considerations for therapeutic options. Mediterr J Hematol Infect Dis. 2021;13(1): e2021016. Doi: 10.4084/MJHID.2021.016
14. Chen N, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet, 2020. 395(10223): 507–513. Doi:10.1016/S0140-6736(20)30211-7.
15. Connors JM, et al. Effect of antithrombotic therapy on clinical outcomes in outpatients with clinically stable symptomatic COVID-19: the ACTIV-4B randomized clinical trial. JAMA. 2021; 326(17):1703–1712.doi:10.1001/jama.2021.17272.
16. Bouck EG, et al. COVID-19 and sepsis are associated with different abnormalities in plasma procoagulant and fibrinolytic activity. Arterioscler Thromb Vasc Biol. 2021; 41(1):401–414. Doi: 10.1161/ATVBAHA.120.315338.
17. Campbell RA, et al. Comparison of the coagulopathies associated with COVID-19 and sepsis. Res Pract Thromb Haemost, 2021. 5(4):e12525. Doi: 10.1002/rth2.12525.
18. Bonaventura A, et al. Endothelial dysfunction and immunothrombosis as key pathogenic mechanisms in COVID-19. Nat Rev Immunol. 2021. 21(5):319–329. Doi: 10.1038/s41577-021-00536-9.
19. Ackermann M, et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in COVID-19. N Engl J Med. 2020. 383(2):120–128. Doi: 10.1056/NEJMoa2015432.
20. Connors JM, Levy JH. COVID-19 and its implications for thrombosis and anticoagulation. Blood. 2020; 135(23): 2033–2040. Doi: 10.1182/blood.2020006000.
21. Connors JM, Levy JH. Thromboinflammation and the hypercoagulability of COVID-19. J Thromb Haemost. 2020; 18(7):1559–1561. Doi: 10.1111/jth.14849.
22. Purcell SC, Godula K. Synthetic glycoscapes: addressing the structural and functional complexity of the glycocalyx. Interface Focus. 2019; 9(2): 20180080. Doi: 10.1098/rsfs.2018.0080.
23. Teuwen LA, Geldhof V, Pasut A, Carmeliet P. COVID-19: the vasculature unleashed. Nat Rev Immunol, 2020. 20(7):389-391. Doi: 10.1038/s41577-020-0343-0.
24. Evans PC, et al. Endothelial dysfunction in COVID-19: a position paper of the ESC Working Group for Atherosclerosis and Vascular Biology, and the ESC Council of Basic Cardiovascular Science. Cardiovasc Res. 2020;116(14): 2177–2184. Doi: 10.1093/cvr/cvaa230.
25. Nagashima S, et al. Endothelial dysfunction and thrombosis in patients with COVID-19-brief report. Arterioscler Thromb Vasc Biol. 2020;40(10): 2404–2407. Doi: 10.1161/ATVBAHA.120.314860.
26. Renzi S, Landoni G, Zangrillo A, Ciceri F. MicroCLOTS pathophysiology in COVID 19. Korean J Intern Med. 2020. https://doi.org/10.3904/kjim.2020.336.
27. McCracken IR, et al. Lack of evidence of angiotensinconverting enzyme 2 expression and replicative infection by SARS- CoV-2 in human endothelial cells. Circulation. 2021;143(8): 865–868. Doi: 10.1161/CIRCULATIONAHA.120.052824.
28. Nicosia RF, Ligresti G, Caporarello N, Akilesh S, Ribatti D. COVID-19 vasculopathy: mounting evidence for an indirect mechanism of endothelial injury. Am J Pathol. 2021;191(8):1374–1384. Doi: 10.1016/j.ajpath.2021.05.007
29. Hoffmann M, et al. SARS- CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 2020;181(2): 271–280.e8. doi: 10.1016/j.cell.2020.02.052.
30. Glowacka I, et al. Differential downregulation of ACE2 by the spike proteins of severe acute respiratory syndrome coronavirus and human coronavirus NL63. J Virol. 2010;84(2): 1198–1205. Doi: 10.1128/JVI.01248-09.
31. Sodhi CP, et al. Attenuation of pulmonary ACE2 activity impairs inactivation of des- Arg9 bradykinin/ BKB1R axis and facilitates LPS- induced neutrophil infiltration. Am J Physiol Lung Cell Mol Physiol. 2018;314(1):L17–L31. Doi: 10.1152/ajplung.00498.2016.
32. van de Veerdonk FL, et al. Kallikrein–kinin blockade in patients with COVID-19 to prevent acute respiratory distress syndrome. Elife. 2020;9:e57555. Doi: 10.7554/ eLife.57555.
33. Meini S, et al. Understanding the pathophysiology of COVID-19: could the contact system be the key? Front Immunol. 2020; 11: 2014. Doi:10.3389/fimmu.2020.02014.
34. Porto BN, Stein RT. Neutrophil extracellular traps in pulmonary diseases: too much of a good thing. Front Immunol. 2016; 7: 311. Doi: 10.3389/fimmu.2016.00311.
35. Zuo Y, et al. Neutrophil extracellular traps in COVID-19. JCI Insight. 2020; 5(11):e138999. Doi: 10.1172/ jci.insight.138999.
36. Zhang Y, et al. Carboxypeptidase B blocks ex vivo activation of the anaphylatoxin–neutrophil extracellular trap axis in neutrophils from COVID-19 patients. Crit Care. 2021; 25(1):51. Doi: 10.1186/s13054-021-03482-z.
37. Magro C, et al. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: a report of five cases. Transl Res. 2020; 220:1-13. Doi: 10.1016/j.trsl.2020.04.007.
38. Leatherdale A, et al. Persistently elevated complement alternative pathway biomarkers in COVID-19 correlate with hypoxemia and predict in- hospital mortality. Med Microbiol Immunol. 2022; 211(1): 37-48. https://doi.org/10.1007/s00430-021-00725-2
39. Holter JC, et al. Systemic complement activation is associated with respiratory failure in COVID-19 hospitalized patients. Proc Natl Acad Sci USA. 2020; 117(40):25018–25025. Doi: 10.1073/pnas.2010540117.
40. Sinkovits G, et al. Complement overactivation and consumption predicts in- hospital mortality in SARS- CoV-2 infection. Front Immunol. 2021; 12: 663187. Doi: 10.3389/fimmu.2021.663187.
41. Holter JC, et al. Systemic complement activation is associated with respiratory failure in COVID-19 hospitalized patients. Proc Natl Acad Sci USA. 2020; 117(40): 25018–25025. Doi: 10.1073/pnas.2010540117.
42. Yu J, et al. Direct activation of the alternative complement pathway by SARS- CoV-2 spike proteins is blocked by factor D inhibition. Blood. 2020; 136(18): 2080–2089. Doi: 10.1182/blood.2020008248.
43. Ali YM, et al. Lectin pathway mediates complement activation by SARS- CoV-2 proteins. Front Immunol. 2021; 12: 714511. Doi: 10.3389/fimmu.2021.714511.
44. Nougier C, et al. Hypofibrinolytic state and high thrombin generation may play a major role in SARSCOV2 associated thrombosis. J Thromb Haemost. 2020; 18(9): 2215–2219. Doi: 10.1111/jth.15016.
45. Blasi A, et al. In vitro hypercoagulability and ongoing in vivo activation of coagulation and fibrinolysis in COVID-19 patients on anticoagulation. J Thromb Haemost. 2020; 18(10): 2646–2653. Doi: 10.1111/jth.15043.
46. Ranucci M, et al. COVID-19-associated coagulopathy: biomarkers of thrombin generation and fibrinolysis leading the outcome. J Clin Med. 2020; 9(11):3487. https://doi.org/ 10.3390/jcm9113487.
47. De la Morena- Barrio ME, et al. Prognostic value of thrombin generation parameters in hospitalized COVID-19 patients. Sci Rep. 2021; 11(1): 7792. Doi: 10.1038/s41598-021-85906-y.
48. Mast AE, et al. SARS- CoV-2 suppresses anticoagulant and fibrinolytic gene expression in the lung. Elife. 2021; 10:e64330. https://doi.org/10.7554/eLife.64330.
49. FitzGerald ES, Chen Y, Fitzgerald K, Jamieson AM. Lung epithelial cell transcriptional regulation as a factor in COVID-19-associated coagulopathies. Am J Respir Cell Mol Biol. 2021; 64(6): 687–697. Doi: 10.1165/rcmb.2020-0453OC.
50. Stanne TM, Pedersen A, Gisslen M, Jern C. Low admission protein C levels are a risk factor for disease worsening and mortality in hospitalized patients with COVID-19. Thromb Res.2021;204: 13–15. Doi: 10.1016/j.yhtomres.2021.05.016
51. Stelzer M, Henes J, Saur S. The role of antiphospholipid antibodies in COVID-19. Curr Rheumatol Rep. 2021; 23(9): 72. Doi: 10.1007/s11926-021-01041-7.
52. Damoiseaux J, et al. Autoantibodies and SARS- CoV2 infection: the spectrum from association to clinical implication: report of the 15th Dresden Symposium on Autoantibodies. Autoimmun Rev. 2022; 21(3): 103012. Doi: 10.1016/j.autrev.2021.103012.
53. Knight JS, Kanthi Y. Mechanisms of immunothrombosis and vasculopathy in antiphospholipid syndrome. Semin Immunopathol. 2022;44(3): 347–362. Doi: 10.1007/s00281-022-00916-w.
54. Reis S, et al. Anticoagulation in COVID-19 patients-An updated systematic review and meta-analysis. Thromb Res. 2022; 219:40-48. Doi: 10.1016/j.thromres.2022.09.001
55. Banik J, Mezera V, Kohler C, Schmidtmann M. Antiplatelet therapy in patients with COVID-19: A retrospective observational study. Thrombosis Update vol.2 2021;2: 100026. Doi: 10.1016/j.tru.2020.100026
56. Zong X, et al. Antiplatelet therapy for patients with COVID-19: Systematic review and meta-analysis of observational studies and randomized controlled trials. Front Med (Lausanne). 2022; 9:965790. Doi: 10.3389/fmed.2022.965790.
57. Matli K, Chamoun N, Fares A, et al. Combined anticoagulant and antiplatelet therapy is associated with an improved outcome in hospitalised patients with COVID-19: a propensity matched cohort study. Open heart, 2021; 8:e001785. Doi: 10.1136/openhrt-2021-001785.
58. Thachil J, Tang N, Gando S, Falanga A, Cattaneo M, Levi M, Clark C, Iba T. ISTH interim guidance on recognition and management of coagulopathy in COVID-19. J Thromb Haemost, 2020; 18(5):1023–1026 doi: 10.1111/jth.14810.
59. Becker RC. COVID-19 update: Covid-19-associated coagulopathy. J Thromb Thrombolysis. 2020;50(1):54-67.doi:10.1007/s11239-020-02134-3
60. BSH Haemostasis and Thrombosis Task Force. The DIC score is of prognostic value in COVID-19 pneumonia. British Society of Hematology. 2020. https://b-s-h.org.uk/media/18151/dic-score-in-covid-19-pneumonia_19-03-2020.pdf
61. American Society of Hematology. COVID-19 and VTE/Anticoagulation. 2022. https://www.hematology.org/ covid-19/covid-19-and-vte-anticoagulation
62. Bikdeli B, et al. COVID-19 and thrombotic or thromboembolic disease: implications for prevention, antithrombotic therapy, and follow-up:JACC State-of-the-Art Review. J Am Coll Cardiol. 2020; 75(23):2950-2973. doi: 10.1016/j.jacc.2020.04.031